Where to Look: Navigating and Compressing 360° Video

Kristen Grauman Facebook AI Research University of Texas at Austin

360° panoramic imagery

360° panoramic imagery

Field of view in spherical images bring new challenges for display and video processing.

This talk

Where to look in 360 images & video

Challenge of viewing 360° videos

Control by mouse

How to find the right direction to watch?

Pano2Vid automatic videography

Pano2Vid Definition

Input: 360° video

Output: natural-looking normal-field-of-view video

Task:control the virtual camera direction

Kristen Grauman, FAIR & UT Austin

[Su et al. ACCV 2016, CVPR 2017]

Pano2Vid automatic videography

Virtual camera direction

Input: 360° Video

Output: normal-field-of-view (NFOV) Video

[Su et al. ACCV 2016, CVPR 2017]

Our approach – AutoCam

Learn videography tendencies from unlabeled Web videos

- Diverse capture-worthy content
- Proper composition

Unlabeled video

Kristen Grauman, FAIR & UT Austin

[Su et al. ACCV 2016, CVPR 2017]

Example spatio-temporal glimpses

First frame of glimpses scored high/low by our approach Kristen Grauman, FAIR & UT Austin

Construct virtual camera trajectory

Densely sample and score glimpses

Pose selection as shortest path(s) problem

Optimize for *multiple diverse* hypotheses

Output smooth view path maximizing capture-worthiness

Datasets

• All videos crawled from YouTube using keywords:

"Hiking", "Mountain climbing", "Parade", "Soccer"

	# videos	Total length
360° videos	86	7.3 hours
HumanCam	9,171	343 hours

• Human-selected trajectories for evaluation only

# Editors	# Videos	# Trajectories	Total length
6	20	480	12 hours

AutoCam results

Automatically select FOV and viewing direction

Kristen Grauman, FAIR & UT Austin

AutoCam results

Output NFOV Video

Automatically select FOV and viewing direction

Kristen Grauman, FAIR & UT Austin

AutoCam results: Multiple diverse hypotheses

Input Video & Cam. Trajectory

Output Videos

Hypothesis 2

AutoCam results

Kristen Grauman, FAIR & UT Austin

[Su et al. ACCV 2016, CVPR 2017]

The "where to look" task for display

Carving a "normal" field of view

- + focus, undistorted view
- always miss something

Selecting a good projection

- + see almost everything
- always warp something

Cubemaps

Problem: Object integrity damaged when same object is projected onto different cube faces.

Our idea: Snap angles

Default 360° cubemap

How to predict the viewing angle?

Kristen Grauman, FAIR & UT Austin

B F

Xiong & Grauman, ECCV 2018

Snap angles formulation

Objective: minimize area of foreground objects near or on cube boundaries.

Pixel objectness [Jain et al. PAMI 2018]

Approach: time-budgeted sequential decision process to rapidly infer best snap angle

Snap angles

Recurrent neural network learns sequence of rotations that minimize foreground disruption

Snap angle results

Foreground objects preserved in same cube face

Snap angle results

Failure cases

Affected by foreground errors

Snap angle results

Efficient angle selection

Human-perceived quality

Xiong & Grauman, ECCV 2018

This talk

Where to look in 360 images & video

How to compress a 360 video?

Status quo – apply usual encoders to cubemap

Problem: 360 video isomers

- Video content is invariant to projection axis
- However, the encoded bit-streams are not

Kristen Grauman, FAIR & UT Austin

Problem: 360 video isomers

- Video content is invariant to projection axis
- However, the encoded bit-streams are not

Kristen Grauman, FAIR & UT Austin

Our idea: Compressible 360 isomers

Given video, predict most compressible isomer (angle)

Kristen Grauman, FAIR & UT Austin

Compressible 360 isomer results

Predicted angle vs. file size heatmap

Kristen Grauman, FAIR & UT Austin

Compressible 360 isomer results

Max Video Size 0% Reduction Min Video Size 100% Reduction

	H264	HEVC	VP9	
Random Center	50.75 74.35	51.62 63.34	51.20 72.92	
OURS	82.10	79.10	81.55	
% size reduction achieved				

Uses < 0.3% the computation of exhaustive search

Kristen Grauman, FAIR & UT Austin

This talk

Where to look in 360 images & video

Compression

Navigation

Kernel Transformer Networks

How to translate a CNN to spherical images?

Summary

Kristen Grauman FAIR & UT Austin

- New challenges for 360 display and video processing
- Our idea Intelligent selection of view/orientation
 - For better human consumption (AutoCam, Snap Angles)
 - For better video compression

Yu-Chuan Su

Bo Xiong

AutoCam [ACCV 2016, CVPR 2017] Snap Angles [ECCV 2018] Compressible isomers [CVPR 2018]