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360° panoramic imagery

Field of view in spherical images bring new 
challenges for display and video processing.
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Where to look in 360 images & video

This talk

Compression

?

Navigation
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Challenge of viewing 360° videos 

How to find the right direction to watch?

Control by mouse
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Input:     360° video
Output: natural-looking normal-field-of-view video
Task:      control the virtual camera direction

Pano2Vid Definition
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[Su et al. ACCV 2016, CVPR 2017]

Pano2Vid automatic videography
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Input: 
360° Video

Output: 
normal-field-of-view 

(NFOV) Video

Virtual camera direction
Pano2Vid automatic videography

[Su et al. ACCV 2016, CVPR 2017]Kristen Grauman, FAIR & UT Austin



Our approach – AutoCam
Learn videography tendencies from unlabeled
Web videos

• Diverse capture-worthy content
• Proper composition
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ST-glimpses

How close?

Human-captured NFOV
videos (“HumanCam”)

Unlabeled video

C3D features 
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Example spatio-temporal glimpses

High capture-worthiness Low capture-worthiness

First frame of glimpses scored high/low by our approach
Kristen Grauman, FAIR & UT Austin



Densely sample and 
score glimpses
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Pose selection as 
shortest path(s) problem

Construct virtual camera trajectory

Output smooth view path maximizing capture-worthiness
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Optimize for multiple diverse hypotheses
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Datasets

• All videos crawled from YouTube using keywords:

“Hiking”, “Mountain climbing”, “Parade”, “Soccer”

# videos Total length
360° videos 86 7.3 hours
HumanCam 9,171 343 hours

• Human-selected trajectories for evaluation only
# Editors # Videos # Trajectories Total length

6 20 480 12 hours
Kristen Grauman, FAIR & UT Austin



AutoCam results

Input 360° Video
Output NFOV Video

Automatically select FOV and viewing direction
[Su & Grauman, CVPR 2017]Kristen Grauman, FAIR & UT Austin



AutoCam results

Automatically select FOV and viewing direction

Input 360° Video
Output NFOV Video

[Su & Grauman, CVPR 2017]Kristen Grauman, FAIR & UT Austin



Input Video &
Cam. Trajectory

Output 
Videos

AutoCam results: 
Multiple diverse hypotheses

Hypothesis 1 Hypothesis 2Kristen Grauman, FAIR & UT Austin



AutoCam results

Center Eye-level Saliency AutoCam
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HumanCam-Likeness

Transferability

Similarity to user-uploaded 
standard web videos

Create plausible videos by learning 
“where to look” from unlabeled video

[Su et al. ACCV 2016, CVPR 2017]Kristen Grauman, FAIR & UT Austin



The “where to look” task for display

Carving a “normal” 
field of view

+ focus, undistorted view
- always miss something

Selecting a good 
projection

+ see almost everything
- always warp something

Kristen Grauman, FAIR & UT Austin



Cubemaps

Problem: Object integrity damaged when same 
object is projected onto different cube faces. 

Kristen Grauman, FAIR & UT Austin



Our idea: Snap angles
Default 360º cubemap

Proposed snap angle prediction

A                       B                    C                 D

A                       B                    C                 D

How to predict the viewing angle? 

Rotate!

Xiong & Grauman, ECCV 2018 Kristen Grauman, FAIR & UT Austin



Snap angles formulation

Objective: minimize area of foreground objects 
near or on cube boundaries.

Approach: time-budgeted sequential decision 
process to rapidly infer best snap angle

Pixel objectness [Jain et al. PAMI 2018]

Kristen Grauman, FAIR & UT Austin



Rotator Aggregator

t =1

Snap Angle 
Predictor

Feature
Extractor

Snap angle
predictionPanorama

t =2

Recurrent neural network learns sequence of 
rotations that minimize foreground disruption

Snap angles

Kristen Grauman, FAIR & UT Austin



Foreground objects preserved in same cube face 

Canonical

Canonical

Ours

Ours

Snap angle results

Kristen Grauman, FAIR & UT Austin



Canonical

Ours

Affected by foreground errors

Failure cases

Snap angle results

Kristen Grauman, FAIR & UT Austin



Efficient angle selection

Snap angle results

Human-perceived quality

Xiong & Grauman, ECCV 2018 Kristen Grauman, FAIR & UT Austin



Where to look in 360 images & video
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How to compress a 360 video?

Cubemap projection

Status quo – apply usual encoders to cubemap

Restacked

Kristen Grauman, FAIR & UT Austin



Problem: 360 video isomers

[Su & Grauman, CVPR 2018]

• Video content is invariant to projection axis
• However, the encoded bit-streams are not

Video 
size

Kristen Grauman, FAIR & UT Austin



Problem: 360 video isomers

Video size vs.
cube rotation angle

• Video content is invariant to projection axis
• However, the encoded bit-streams are not

[Su & Grauman, CVPR 2018]Kristen Grauman, FAIR & UT Austin



Our idea: Compressible 360 isomers

[Su & Grauman, CVPR 2018]

Given video, predict most compressible isomer (angle)

Kristen Grauman, FAIR & UT Austin



Compressible 360 isomer results

Predicted 
angle 
vs. file size 
heatmap

[Su & Grauman, CVPR 2018]Kristen Grauman, FAIR & UT Austin



Compressible 360 isomer results

[Su & Grauman, CVPR 2018]
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H264 HEVC VP9

RANDOM 50.75 51.62 51.20
CENTER 74.35 63.34 72.92

OURS 82.10 79.10 81.55

Table 3: Size reduction of each method. The range is
[0, 100], the higher the better.
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Figure 8: Qualitative examples. The heatmap shows the
normalized reduction, and the overlaid circle shows our pre-
dicted result. The two images are the first and last frame
of the clip rendered in the predicted orientation. Last row
shows a failure example. Best viewed in color.

cubemap orientation during compression as more advanced
video codecs are used. While there remains a 20% room for
improvement compared to the optimal result (as ascertained
by enumerating Ω), our approach is significantly faster and
takes less than 0.3% the computation.

Fig. 8 shows example prediction results. Our approach
performs well despite the diversity in the video content and
recording situation. The complexity in the content would
make it hard to design a simple rule-based method to predict
Ωmin (such as analyzing the continuity in Fig. 6); a learning
based method is necessary. The last row shows a failure
case of our method, where the distribution of video size is
multimodal, and the model selects the suboptimal mode.

We next examine whether the model can be transferred
across video formats, e.g. can the model trained on H264
videos improve the compression rate of HEVC videos? Ta-
ble 4 shows the results. Overall, the results show our ap-
proach is capable of generalizing across video formats given
common features. We find that the model trained on H264
is less transferable, while the models trained on HEVC and

H264 HEVC VP9

HEVC VP9 H264 VP9 H264 HEVC

70.82 78.17 85.79 84.61 83.19 75.16

Table 4: Size reduction of our approach. Top row indicates
training source, second row is test sources.
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(a) Predicted Ωmin (H264).
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(b) Real Ωmin of H264.
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(c) Predicted Ωmin (HEVC).
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(d) Real Ωmin of HEVC.
Figure 9: Distribution of Ωmin (%). Predictions are on
H264 videos with different training data.

VP9 perform fairly well on H264. In particular, the model
trained on HEVC performs the best across all formats. The
reasons are twofold. First, the models trained on HEVC
and VP9 focus on the appearance feature which is common
across all formats. Second, the models trained on H264 suf-
fer more from overfitting because the distribution of Ωmin

is more concentrated.
The distribution of Ωmin provides further insight into the

advantage of the model trained on HEVC. See Fig. 9. The
predicted Ωmin tend to be more concentrated around θ=0
than the real Ωmin. Because the distribution of Ωmin is
more dispersed in HEVC, so is the prediction of Ωmin by
the model trained on HEVC.

6. Conclusion
This work studies how to improve 360◦ video compres-

sion by selecting a proper orientation for cubemap projec-
tion. Our analysis across 3 popular codecs shows scope for
reducing video sizes by up to 76% through rotation, with an
average of more than 8% over all videos. We propose an ap-
proach that predicts the optimal orientation given the video
in a single orientation. It achieves 82% the compression rate
of the optimal orientation while requiring less than 0.3% of
the computation of a non-learned solution (fraction of a sec-
ond vs. 1.5 hours per GOP). Future work will explore how
to combine orientation search and prediction to reach better
compression rates under a computational budget.

8

% size reduction achieved

Min Video Size
100% Reduction

Max Video Size
0% Reduction

Uses < 0.3% the computation of exhaustive search
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Kernel Transformer Networks
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[Su & Grauman, CVPR 2019]

Talk in this workshop
by Yu-Chuan Su

coming up 

Poster Thursday
10:00 am
Poster 51 

How to translate a CNN to spherical images?

Kristen Grauman, FAIR & UT Austin



Summary

• New challenges for 360 display and video 
processing 

• Our idea - Intelligent selection of view/orientation
– For better human consumption (AutoCam, Snap Angles)
– For better video compression

Kristen Grauman
FAIR & UT Austin 

Yu-Chuan
Su

Bo
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AutoCam
[ACCV 2016, CVPR 2017]
Snap Angles
[ECCV 2018]
Compressible isomers
[CVPR 2018]


